$f(x,y)=|d_V|^3(x,y)+|d_H|^3(x,y)$

and

$$W=\Sigma f(x,y)$$

where d_V and d_H are differences in intensity of neighboring pixels in vertical and horizontal directions respectively, W is edge strength and summation is over said portion;

determining an orientation of said predetermined pixel intensity arrangement;

positioning said templates in alignment with said predetermined pixel intensity arrangement in accordance with said orientation determined by said orientation determination means; and

comparing said plurality of templates to said predetermined pixel intensity arrangement.

- 9. The method according to claim 8, wherein an examined portion is discarded if its edge strength does not exceed a preselected threshold.
- 10. The method according to claim 8, wherein the step of determining comprises determining edge orientation ϕ in accordance with the following equations:

$$x_0 = \{ \sum f(x,y)x \} / W$$

and

$$y_0 = {\Sigma f(x,y)y}/W$$

wherein x and y are the coordinates of each of said pixel 30 intensity arrangement,

 $f(x,y)=|d_V|^3(x,y)+|d_H|^3(x,y)$, where d_V and d_H are differences in intensity of neighboring pixels of said pixel intensity arrangement, $W=\Sigma f(x,y)$ over said pixel intensity arrangement, and

$$\phi=0+0.5\pi$$
, if $\epsilon \ge 0.5$

and

$$\phi = \theta$$
 if $\epsilon < 0.5$

where

$$\theta$$
=0.5 tan⁻¹ $(2M_{xy}/M_xM_y)$
 ϵ = $(M_x \sin^2 \theta + M_y \cos^2 \theta + 2M_{xy} \sin \theta \cos \theta)/(M_x + M_y)$

where M_x , M_y and M_{xy} refer to second order moments defined as

$$M_x = \Sigma f(x,y)(x-x_0)^2$$

$$M_{y} = \sum f(x,y)(y-y_0)^2$$

10 and

$$M_{xy} = \sum f(x,y)(x-x_0)(y-y_0)^2$$

and summation is over a circular area preselected diameter center at (x_0,y_0) .

- 11. The method according to claim 10, wherein said preselected diameter is 8 pixels.
- 12. The method according to claim 10, wherein the step of aligning comprises rotation of said templates according to the following equations:

and

25

$$y'=-x \sin \phi + y \cos \phi$$

where (x,y) and (x',y') are coordinates of a pixel before and after rotation respectively.

13. The method according to claim 8, wherein the step of comparing comprises determining matching strength r in accordance with the following equation:

$$r = \frac{\sum v(x, y)t(x, y)}{\sqrt{\sum v^2(x, y)}\sqrt{\sum t^2(x, y)}}$$

where v(x,y) and t(x,y) are intensity values at (x,y) in a smoothed platen image and template image respectively, and summation is over template size.

14. An anti-counterfeit detector according to claim 13, wherein a match is indicated by r being greater than a preset threshold.

* * * * *